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This paper considers structural non-parametric random utility models for continuous choice vari-
ables with unobserved heterogeneity. We provide sufficient conditions on random preferences to yield
reduced-form systems of non-parametric stochastic demand functions that allow global invertibility be-
tween demands and non-separable unobserved heterogeneity. Invertibility is essential for global identi-
fication of structural consumer demand models, for the existence of well-specified probability models
of choice and for the non-parametric analysis of revealed stochastic preference. We distinguish between
new classes of models in which heterogeneity is separable and non-separable in the marginal rates of
substitution, respectively.

1. INTRODUCTION

Heterogeneity in consumer choices is generally recognized as an empirical regularity (e.g.
Heckman, 2001). A growing econometric literature attempts to model heterogeneous consumer
demand within the classical microeconomic consumer choice framework of utility maximiza-
tion (e.g. Brown and Matzkin, 1995; Beckert, 2006; Browning and Carro, 2007; Lewbel, 2007;
Matzkin, 2005, 2007). Unobserved heterogeneity is thereby modelled in terms of random util-
ity. It is well known from the work of Brown and Walker (1989) that maximization of random
utility implies that the random heterogeneity components in stochastic demand equations cannot
generally be additive, as typically assumed in statistical demand models. Consequently, in order
to be consistent with random utility maximization, demand models should, in general, be non-
separable in unobserved heterogeneity. This, however, imposes further requirements for global
econometric identification of utility from demands. In non-separable demand models for a sin-
gle good identification is typically accomplished through a monotonicity assumption; see, for
example, Matzkin (2003) and Imbens and Newey (2002). For the case of consumer choice over
several goods, inducing a system of demands, this monotonicity assumption becomes a global
invertibility condition. Indeed, Matzkin (2005) uses the global invertibility condition to show
global identification for general non-parametric simultaneous equation systems. We ask: what
conditions on heterogeneous preferences enable such a global invertibility assumption?
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More formally, unobserved preference heterogeneity can be modelled in terms of random
utility U (x,ε), where x ∈ RJ+ is a vector of continuous consumption amounts of J goods and
ε ∈ RJ−1 is a J − 1-dimensional vector representing unobserved heterogeneity in preferences.
Then, given prices p ∈ RJ−1++ , pJ ≡ 1, and total expenditure m > 0, the system of stochastic
demands h(p,m,ε) for the J −1 inside goods x−J = (x1, . . . xJ−1)

′ solves

p = MRS(x−J ,m −p′x−J ,ε)

x−J = h(p,m,ε),

where, assuming differentiability, MRS(x,ε) = [
∂

∂x j
U (x,ε)/ ∂

∂xJ
U (x,ε)

]
j=1,...,J−1 is the J −1-

dimensional vector of stochastic marginal rates of substitution (MRS). Utility maximization
implies that the conditional residuals ν(p,m,ε) = h(p,m,ε)− E[h(p,m,ε)|p,m] must be func-
tionally dependent on p and m, so that the heterogeneity components ε generally cannot be
isolated additively (Brown and Walker, 1989). Lewbel (2001) provides conditions on the reduced
form demand system that are necessary and sufficient for statistical demands to satisfy revealed
preference inequalities implied by utility maximization. This paper goes beyond additivity of
heterogeneity terms and considers the general consumer choice problem in which unobserved
preference heterogeneity ε is non-separable in h(p,m,ε).

Given ε, utility maximization implies that the system h(p,m,ε) satisfies integrability con-
ditions, so that the underlying utility function could be recovered if ε were known. Global
identification of U (x,ε) then requires that, given p and m, a unique ε can be identified with
x−J = h(p,m,ε). Under assumptions on U (x,ε) that guarantee that induced demands h(p,m,ε)
form a system of continuous functions, rather than correspondences, this requirement is equiva-
lent to the mapping h between demands x−J and unobserved preference heterogeneity ε, given
p and m, being globally homeomorphic, that is, continuous and one to one. Global identification
under invertibility assumptions is treated by Brown and Matzkin (1995), following the approach
taken by Brown (1983) and Roehrig (1988).1

The global homeomorphism property is also required for the existence of well-specified
probability models for choice variables x−J , given p and m, and, hence, for the analysis of
revealed stochastic preference (McFadden and Richter, 1971, 1990; and McFadden, 2004).2 In
the absence of a proper probability model the postulates of revealed stochastic preference cannot
be verified, because for an unambiguous revelation of stochastic preference, it is necessary that
stochastic demands be globally invertible. The results provided in this paper guarantee global
invertibility.

Unobserved preference heterogeneity ε can enter U (x,ε) in complex ways. We distinguish
two specific cases. In the first, unobserved heterogeneity is multiplicatively separable in the
marginal rate of substitution function MRS(x,ε), as in Brown and Matzkin (1995); in the sec-
ond, this separability is relaxed. For these cases, this paper examines conditions on the structural
model U (x,ε) or MRS(x,ε) that induce the mapping h between demands x−J and unobserved
preference heterogeneity ε, given p and m, to be globally homeomorphic.

The paper proceeds as follows. Section 2 lays out the formal framework and notation for
this analysis. Section 3 presents a result on global invertibility when unobserved preference het-
erogeneity enters the structural model in a multiplicatively separable fashion. This result extends
the model considered by Brown and Matzkin (1995). Section 4 discusses the general case of
non-separable heterogeneity. Section 5 concludes.

1. Benkard and Berry (2006) point out that these results are deficient. Recent work by Matzkin (2005) demon-
strates how these deficiencies can be remedied and provides a complete characterization of the identification conditions.

2. In an earlier working paper, Beckert and Blundell (2005), appendix A, we present an example of a deficient
probability model in which there are continuous choice variables, but they do not have a joint density with respect to
Lebesgue measure. This appendix can be accessed at www.restud.org.uk/supplementary.
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2. FRAMEWORK FOR ANALYSIS

The analysis in this paper proceeds within the following set-up. Denote by (U,U, PU ) the prob-
ability space defined over a set of random (direct) utility functions U : RJ+ ×RJ−1 → R, that
is, U (x,ε). Here, x ∈ RJ+ is a vector of continuous consumption amounts; ε ∈ RJ−1 is a J − 1-
dimensional random component representing unobserved preference heterogeneity, distributed
according to probability measure Pε, independent of p and m; PU is the probability measure on
U induced by Pε, that is, PU (U ∈ U) = Pε(ε : U (·,ε) ∈ U); and U is the Borel σ -algebra of
subsets of U. Elements U ∈ U in this probability space satisfy the following assumptions:

Assumption A1. For each ε, U ∈ U is continuous in its arguments, twice continuously diff-
erentiable in ε,x, strictly monotone, concave, and strictly quasi-concave in x.

Assumption A2 ((Smoothness in the Sense of Debreu). The bordered Hessian satisfies
∣∣∣∣∣
∇ww′U (x,ε) ∇wU (x,ε)

∇w′U (x,ε) 0

∣∣∣∣∣ �= 0

for all w′ = (x′,ε′).

Assumption A1 ensures that the induced system of demands h(p,m,ε) constitutes a system
of functions, rather than correspondences. Assumption A2 extends the condition on the bordered
Hessian beyond x to ε. This, in turn, extends the induced continuous differentiability of h from p
and m to ε. It should be emphasized that these assumptions suffice to establish classical micro-
economic properties of demand functions for their stochastic representations h(p,m,ε). Define
the vector of marginal rates of substitution as

MRS(x,ε) =
[

∂

∂x j
U (x,ε)/

∂

∂xJ
U (x,ε)

]
j=1,...,J−1

.

Then, under these assumptions, the implicit system

0 = g(x−J ,m,p,ε) = MRS(x−J ,m −p′x−J ,ε)−p

associates a unique value of x−J with any p, m, and ε, that is, it has a well-defined reduced
form x−J = h(p,m,ε). Strict concavity and quasi-concavity for each ε imply the Weak Axiom,
given ε. Together with strong monotonicity and continuity, this implies that the stochastic de-
mand functions are homogeneous of degree zero and satisfy Walras’ Law almost surely (a.s.)
Homogeneity, Walras’ Law, and the Weak Axiom, in turn, imply negative definiteness of the
Slutsky matrix a.s., while almost sure Slutsky symmetry is implied by maximization of random
utility.3 The preservation of these properties is an important feature of the class of random utility
models considered in this paper, because it implies that, in the terminology of Browning and
Carro (2007), parameters and data are variation independent.

Assumption A3. The (J −1)× (J −1) matrix ∇εMRS(x,ε) has full rank J −1 for all ε.

Definition . The random variable x ∈ RJ has dimension J , denoted by dim(x) = J , if it
has a non-degenerate distribution on RJ .

3. For a detailed discussion see Mas-Colell, Winston and Green (1995).

c© 2008 The Review of Economic Studies Limited
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Assumption A4. dim(ε) = J −1, and Pε is functionally independent of (p′,m).

Assumptions A1 and A2 imply that the Jacobian of h with respect to ε exists. Assumption
A3 is necessary for it to have full rank a.s.; see Section 4. Assumption A4 is conventionally mo-
tivated by postulating that ε are utility parameters, and preferences are assumed not to depend on
prices and income.4 Together with Assumption A4, Assumptions A1–A3 guarantee that x−J has
a non-degenerate distribution on the budget set B−J (p,m) = {x−J ∈RJ−1+ : p′x−J = m, xJ ≥ 0},
given p and m. Conversely, since, given p and m, the co-domain of h is a J −1-dimensional space,
the continuous invertibility of h with respect to ε requires that the dimension of ε be J −1. For h
smooth with respect to ε, as a consequence of A2, Beckert (2006) shows that this dimensionality
requirement is also necessary for the induced distribution of x−J to be non-degenerate, given p
and m.

On the basis of A1–A4, the probability space (U,U, PU ) induces a probability space for
demands. Let (h,H, Ph) denote this probability space, where Ph is the probability measure in-
duced by Pε through the non-linear transformation h(p,m,ε), given p and m, and let H be the
Borel σ -field of subsets of h. In the terminology of revealed stochastic preference (McFadden,
2004), the probability spaces (U,U, PU ) and (h,H, Ph) are consistent (or h is U-rational), if
i.a. for any x−J ∈ RJ−1+ satisfying p′x ≤ m, xJ ≥ 0, the inverse image of x−J = h(p,m,ε)

with respect to ε, given p and m, is in U , that is, Ph(h(p,m,ε)) = PU (Ũ (p,m,x−J )), where
Ũ (p,m,x−J )) = {U ∈ U : (x−J ,m −p′x−J )′ = (h(p,m,ε), xJ )′ = argmaxp′x≤m U (x,ε)} ∈ U . In
order for unambiguous revelation of stochastic preferences from stochastic demands, this inverse
should be unique. The invertibility conditions provided in this paper guarantee such uniqueness.

3. GLOBAL INVERTIBILITY WITH MRS-SEPARABLE HETEROGENEITY

This section examines the specification of structural models in which unobserved preference het-
erogeneity ε enters the marginal rates of substitution in a separable form. Specifically, it considers
models for marginal rates of substitution in which unobserved preference heterogeneity enters
in a multiplicative fashion—MRS-separable heterogeneity. There are clear advantages of such
specifications. They permit higher order derivatives of random utility to depend on unobserved
heterogeneity as well, allowing i.a. for heterogeneous curvature of utility and heterogenous sub-
stitution elasticities. Moreover, it will be seen that they readily induce global invertibility. They
include the model of Brown and Matzkin (1995) as a special case; in their model, heterogeneity
enters random utility linearly, so that the utility curvature is not heterogeneous.

The following additional assumption is maintained:

Assumption A5. MRS(x,ε) is multiplicatively separable with respect to ε:

MRS(x,ε) = v(x)+ K (x)ε,

where v(x) is a (J −1)×1 vector of non-negative functions, K (x) is a (J −1)× (J −1) matrix
with full rank and span equal to R J−1++ .

Note that A5 implies the previous assumption A3.

Theorem 3.1. Suppose A1, A2, A4, and A5 hold. Then, for any p and m, h(p,m,ε) is glob-
ally invertible for all demand vectors x−J ∈ B−J (p,m), and, hence, x−J has a non-degenerate
distribution on B−J (p,m), given any p and m.

4. Prices and income are treated as non-stochastic in this analysis. When they are stochastic, this assumption is
usually replaced by a conditional independence assumption; see Brown and Walker (1989), Lewbel (2001).

c© 2008 The Review of Economic Studies Limited



BECKERT & BLUNDELL HETEROGENEITY AND CONSUMER CHOICE 1073

Proof. From the first-order conditions and A5, it follows immediately that

ε = K (x)−1(p− v(x)),

where x = (x′−J , xJ )′, x−J ∈ B−J (p,m), and xJ = m − p′x−J are well defined by A1 and A2.
Non-degeneracy follows from A4. ‖

Two examples can serve as illustrations of this result.

Example 3.1. Consider the random utility model

U (x,ε) = u(x−J )′ε +ν(x),

where u(·) is defined onRJ−1+ , is monotonically increasing, and is weakly concave, ν(·) is defined
on RJ+ and satisfies A1, and ε has a non-degenerate distribution on RJ−1+ (A4). In this model,
preferences are non-separable over the J goods, and marginal utilities may involve any subset of
the components of ε. Concavity of u(·) and strict concavity of ν(·) imply that A2 holds.5 Then

MRS(x,ε) =



∂
∂x j

ν(x)

∂
∂xJ

ν(x)




j=1,...,J−1

+
[

∂

∂xJ
ν(x)

]−1 [
∂

∂x j
u(x−J )′

]
j=1,...,J−1

ε

= v(x)+ K (x)ε,

where v(x) =
[ ∂

∂x j
ν(x)

∂
∂xJ

ν(x)

]
j=1,...,J−1

∈ RJ−1+ and K (x) = [
∂

∂xJ
ν(x)

]−1[ ∂
∂x j

u(x−J )′
]

j=1,...,J−1.

A1 and A2 imply that K (x) has full rank and that its span is RJ−1++ .
The model due to Brown and Matzkin (1995) can be obtained by choosing u(·) the identity

function, that is, u(x−J ) = x−J for any x−J ∈ RJ−1+ , and ν(x) = φ(x)+ xJ , so that U (x,ε) =
φ(x)+ x′−J ε + xJ .6 Brown and Matzkin’s model implies that marginal rates of substitution are
additive in ε, hence invertibility follows also directly from the first-order conditions. Note that this
class of models, unlike Brown and Matzkin’s, encompasses utility with heterogeneous curvature.

Example 3.2. This example combines CES features with Barten-type equivalence scal-
ing.7 For the case of three goods, with x = [x1, x2, x3]′ and ε = [ε1,ε2]′, suppose that

U (x; ε,ρ) =
(
ε1xρ

1 + ε2xρ
2 + x3 +

( x1

2
+ x2

2

)ρ)1/ρ
,

where ρ ∈ (0,1) is a fixed parameter, and {εi > 0, i = 1,2} are random components. Then,
MRS(x,ε,ρ) = vec{ρεi xρ−1

i + ρ
2 ( x1

2 + x2
2 )ρ−1, i = 1,2}, while ∇x3 MRS(x,ε,ρ) = 0, and

∇εMRS(x,ε,ρ) = diag{ρxρ−1
i , i = 1,2}. Hence,

v(x) = ι
ρ

2

( x1

2
+ x2

2

)ρ−1
, where ι = [1,1]′,

K (x) = diag{ρxρ−1
i , i = 1,2},

5. To see this, note that ∇xx′U (x,ε) is an M-matrix, as defined in Horn and Johnson (1991), ∇xε′U (x−J ,ε) is a
diagonal matrix, ∇xJ ε′U (x,ε) = 0, and ∇εε′U (x,ε) = 0, while ∇wU (x,ε) >> 0 for w = (x′ε′)′.

6. Note that these restrictions do not amount to a positive monotonic transformation, so that these two random
utility models do not belong to the same equivalence class.

7. See Barten (1964, 1968).

c© 2008 The Review of Economic Studies Limited
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so that, given p = [p1, p2]′, for x−3 ∈ B−3(p,m), inversion yields

(ε1,ε2)
′ = diag{x1−ρ

i /ρ, i = 1,2}
[

p− ι
ρ

2

( x1

2
+ x2

2

)ρ−1
]
.

As these examples show, there exists a class of random utility models, which are non-trivial
generalizations of the linear heterogeneity model and are globally invertible. This class induces
marginal rates of substitution with multiplicatively separable heterogeneity and heterogeneous
utility curvature.

4. GLOBAL INVERTIBILITY WITHOUT MRS-SEPARABLE HETEROGENEITY

This section relaxes the MRS-separable heterogeneity restriction and treats the general non-
separable case. The exposition illuminates the power of the restrictions that the multiplicative
separability assumption of the preceding section imposes. It starts with a discussion of the distinct
requirements for local and global homeomorphisms, respectively and it subsequently presents a
sequence of results for general, non-separable cases that yield global homeomorphic demands,
given p and m.

4.1. Local vs. global homeomorphisms

With multiplicatively separable heterogeneity in the marginal rates of substitution, global invert-
ibility follows immediately from the first-order conditions. In general, however, the homeomor-
phism property must be deduced from properties of the Jacobian ∇εh(p,m,ε), a (J −1)×(J −1)
matrix. Since the first-order conditions of the utility maximization problem hold for every ε, this
Jacobian can be expressed as

∇εh(p,m,ε) = −[∇x−J MRS(x,ε)
]−1 ∇εMRS(x,ε),

where x = (h(p,m,ε)′,m − h(p,m,ε)′p)′, for any p,m,ε. Assumption A2, in its conventional
form with respect to x, implies that rk(∇x−J MRS(x,ε)) = J −1 for x−J ∈ B−J (p,m) = {x−J ∈
R

J−1+ : p′x−J = m, xJ ≥ 0}. Hence, rk(∇εMRS(x,ε)) = J − 1 is necessary for the Jacobian to
have full rank. If it has full rank, then, together with h being continuous, this is sufficient for h to
be a local homeomorphism with respect to ε, by an application of the Implicit Function Theorem.
Note that the Implicit Function Theorem involves sufficient, not necessary conditions for local
invertibility.

Global invertibility places stronger conditions on the Jacobian. Arguments establishing
global homeomorphisms rest on applications of the theorems by Gale and Nikaido (1965) or
Mas-Colell (1979). Akin to the weaker Implicit Function Theorem, these theorems provide
also only sufficient conditions for the existence of global homeomorphisms. They essentially
strengthen the requirement from the Jacobian having full rank to the Jacobian having some or
all principal minors positive, that is, they also place conditions on the principal sub-matrices
of ∇εh(p,m,ε). Specifically, the Gale and Nikaido (1965) conditions are: the support of ε is
a rectangle, and the Jacobian is a P matrix for every ε, that is, every principal minor has posi-
tive sign. The Mas-Colell (1979) conditions are weaker; if the support of ε is a rectangle, the
Jacobian needs to be a P matrix only at its vertices, and, for ε in the interior of its support, it
is only required that the Jacobian have a positive determinant. An example of a function ψ(ε)
satisfying Gale and Nikaido (1965) conditions is provided in the Appendix.

Cast in this framework, the research question of this paper can be re-stated: what condi-
tions on MRS(x,ε) induce the Gale and Nikaido (1965) or Mas-Colell (1979) conditions for

c© 2008 The Review of Economic Studies Limited
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∇εh(p,m,ε)? In light of the foregoing discussion, and recognizing that utility functions form
equivalence classes whose members have the same marginal rates of substitution, it is sensible
to proceed with assumptions on MRS(x,ε), rather than on U (x,ε), in the main results of this
section. These results will be illustrated with examples of random utility functions U (x,ε) that
facilitate the interpretation of such assumptions.

As this paraphrase of the main tools to establish local and global homeomorphism has al-
luded to, within the constraints of these invertibility theorems there is unfortunately no scope to
determine necessary conditions for global homeomorphisms.

The conditions presented in this paper relate to interior solutions of the consumer’s utility
maximization problem. Allowing for corner solutions permits slightly weaker conditions. Corner
solutions, say x j = h j (p,m,ε) = 0 for some j = 1, . . . , J , are characterized by ∂

∂x j
U (x,ε) ≤ λp j ,

while the Kuhn–Tucker condition of the constrained optimization problem

x′(∇xU (x,ε)−λ(p′, pJ )′) = 0

continues to hold at x = (h(p,m,ε)′,m − h(p,m,ε)′p)′, for any ε, where λ > 0 is the shadow
value of m. Assuming that one good is consumed in positive amounts a.s., say xJ > 0, it follows
that

x′−J (MRS(x,ε)−p) = 0 a.s.

This implies that

0 = A(p,m,ε)+ B(p,m,ε) a.s., (4.1)

where

A(p,m,ε) = ∇εh(p,m,ε)′ (MRS(x,ε)−p)

B(p,m,ε) = [∇εh(p,m,ε)′ +∇εMRS(x,ε)′(∇x−J MRS(x,ε)′)−1]×·· ·
∇x−J MRS(x,ε)′h(p,m,ε),

for x = (h(p,m,ε)′,m − p′h(p,m,ε))′. Hence, for interior solutions, MRS(x,ε) = p, so that
(4.1) implies that B(p,m,ε) = 0 a.s. Strict concavity, in turn, yields rk(∇x−J MRS(x,ε)) = J −1
a.s., so that the Jacobian satisfies ∇εh(p,m,ε)′ =−∇εMRS(x,ε)′(∇x−J MRS(x,ε)′)−1, as above.
For corner solutions, MRS(x,ε)−p �= 0 on a set of positive Pε measure, so that, in order for (4.1)
to hold, ∇εMRS(x,ε) and, hence, the Jacobian ∇εh(p,m,ε) may be rank deficient with positive
probability. Therefore, in the presence of corner solutions, the conditions presented in this paper
need only hold with positive probability, rather than almost surely.

4.2. Global invertibility in the general case

This section considers a variety of structural models where marginal rates of substitution are
not separable in heterogeneity. Beckert (2006) provides a related result which requires strong
symmetry and definiteness assumptions on the product of the derivatives of MRS(x,ε) with
respect to its arguments. The conditions provided here cover a wider class of models and are
readily interpretable in terms of microeconomic consumer choice theory.

The following additional assumptions are maintained:

Assumption A4′. In addition to A4, assume that supp(ε) is a rectangle.

This assumption is innocuous since, within the framework of random utility models laid out
in Section 2, the distribution of ε is independent of p and m. It is necessary when applying the
Gale and Nikaido (1965) and Mas-Colell (1979) Theorems.

c© 2008 The Review of Economic Studies Limited
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Assumption A6. U (x,ε) is strictly concave in x−J and linear in the outside good xJ , and
∇εMRS(x,ε) is positive definite a.s.

Assumption A6 implies A3 and encompasses a wide class of random utility models and
merely requires the existence of an outside good for which utility is linear. Often, such outside
options have natural interpretations in applications, as they amount to the difference between m
and the expenditure on the inside goods, p′h(p,m).

Theorem 4.1. Suppose that A1, A2, A4′, and A6 hold. Then, for any p and m, h(p,m,ε) is
globally invertible for all x−J ∈ B−J (p,m), and, hence, x−J has a non-degenerate distribution
on B−J (p,m), given any p and m.

Proof. A6 implies that −∇x−J MRS(x,ε) is positive definite for all x and ε, and symmetric.
Its inverse inherits these properties. Horn and Johnson (1985), theorem 7.6.3, then implies that
its product with a positive definite matrix ∇εMRS(x,ε) is diagonalizable, that is, similar8 to a
diagonal matrix, whose eigenvalues are positive. Similarity means that there exists a non-singular
transformation S of x−J = h(p,m,ε), possibly dependent on p,m,ε, such that the transformed
vector of demands has a distribution, conditional on p and m, that can be deduced from the
distribution of ε by evaluation at the inverse function and multiplication by a Jacobian which is
diagonal. Then, one diagonalization is

∇εh(p,m,ε) = S(p,m,ε)D(p,m,ε)S(p,m,ε)−1,

where S(p,m,ε) is a non-singular matrix consisting of the J − 1 eigenvectors of ∇εh(p,m,ε)
and D(p,m,ε) is a diagonal matrix with the positive eigenvalues of ∇εh(p,m,ε) on its diagonal.
This is necessary and sufficient for ∇εh(p,m,ε) to be positive definite almost surely. The Gale–
Nikaido conditions need to be verified. For k = 1, . . . , J − 1, define k × (J − 1) matrices Ek =
[Ik,0], where 0 is a (J − 1 − k)× (J − 1) matrix of zeros. Then, the k-th principal minor of the
Jacobian matrix ∇εh(p,m,ε) is

|∇εh(p,m,ε)k | = |Ek∇εh(p,m,ε)E ′
k | = |Ek S(p,m,ε)D(p,m,ε)S(p,m,ε)−1 Ek |.

Therefore, for any y ∈ Rk,y �= 0, and any k = 1, . . . , J −1,

y′∇εh(p,m,ε)ky = y′Ek∇εh(p,m,ε)E ′
ky

= (E ′
ky)′∇εh(p,m,ε)(E ′

ky) > 0,

where E ′
ky �= 0 and the last inequality follows because ∇εh(p,m,ε) is positive definite almost

surely. Hence, the Jacobian has all principal submatrices positive definite almost surely. There-
fore, for any k = 1, . . . , J −1, there exists a full-rank k × k matrix Pk(p,m,ε) such that

∇εh(p,m,ε)k = Pk(p,m,ε)Pk(p,m,ε)′

⇒ |∇εh(p,m,ε)k | = |Pk(p,m,ε)Pk(p,m,ε)′|
= |Pk(p,m,ε)|2 > 0.

Therefore, the Gale and Nikaido (1965) conditions are satisfied. ‖
8. An n × n matrix A is similar to an n × n matrix B if there exists a non-singular n × n matrix S such that

B = S−1 AS. Similarity is an equivalence relation. See Horn and Johnson (1985), section 1.3, for further details.

c© 2008 The Review of Economic Studies Limited
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Quasi-linearity U (x,ε) in the outside good xJ leaves the theoretical possibility that the
demand for the outside good may be negative. It can be relaxed if, instead, more structure is
imposed on ∇εMRS(x,ε) and ∇x−J MRS(x,ε). Consider, for instance,

Assumption A7. (i) ∇x−J MRS(x,ε) has negative diagonal and non-negative off-diagonal
entries, a.s.; (ii) (−1)J ∇εMRS(x,ε) has positive diagonal and non-positive off-diagonal entries,
and all its principal minors are positive, a.s.; and (iii) (−1)J ∇x−J MRS(x,ε)−∇εMRS(x,ε) ≥
0, a.s.

Matrices, having properties as in (i) and (ii), are sometimes referred to as M-matrices; see,
for example, Horn and Johnson (1991). Assumption A7 is particularly attractive because it has an
economic interpretation. It can be shown that the restrictions imposed by A7 imply that the inside
goods x1, . . . , xJ−1 are pairwise symmetric gross substitutes, while x j and xJ , j = 1, . . . , J −1,
are pairwise not necessarily symmetric gross complements. This structure may, for instance,
prevail in demand for Internet services, where users choose between (the intensity of usage of)
various web applications and bandwidth: the applications are possibly substitutable, but each can
be performed more efficiently at higher levels of bandwidth. One can think of numerous other
applications which share the generic features of this example: usage of substitutable varieties of
“software” and complementary “hardware”.

Let Z be the class of square matrices whose off-diagonal elements are all non-positive, as
in Fiedler and Pták’s (1962) definition (4,1). And let K be those elements in Z which have all
principal minors positive, as in Fiedler and Pták’s (1962) definition (4,4). Theorem 5.4 below uses
Fiedler and Pták’s (1962) theorem (4,6): If A ∈ K, B ∈ Z and B − A ≥ 0, then, i.a., B−1 A ∈ K.

Theorem 4.2. Suppose that A1, A2, A4′, and A7 hold. Then, for any p and m, h(p,m,ε) is
globally invertible for all x−J ∈ B−J (p,m), and, hence, x−J has a non-degenerate distribution
on B−J (p,m), given any p and m.

Proof. By A7(i), −∇x−J MRS(x,ε) has positive diagonal and non-positive off-diagonal
entries. Hence it belongs to the class Z; and by A7(ii), (−1)J ∇εMRS(x,ε) belongs to the class
K. Hence, using A10(iii), by Fiedler and Pták (1962), theorem (4,6),

h(p,m,ε) = −[∇x−J MRS(x,ε)
]−1 ∇εMRS(x,ε)

= (−1)J [−∇x−J MRS(x,ε)
]−1 ∇εMRS(x,ε) ∈ K,

that is, all its principal minors are positive, so that the Gale and Nikaido (1965) conditions are
satisfied. ‖

With additional assumptions on the principal minors, such sign restrictions imply, further-
more, that ∇εMRS(x,ε) and −[∇x−J MRS(x,ε)

]−1 are strictly totally positive and bounded
almost surely. Applying the Cauchy–Binet formula to |h(p,m,ε)k |, k = 1, . . . , J − 1, and using
a result due to Karlin (1968) on totally positive matrices (theorem 3.1, ch.5), it can be shown
immediately that ∇εh(p,m,ε) is a P matrix. Hence, with

Assumption A8. ∇εMRS(x,ε) and −[∇x−J MRS(x,ε)
]−1

are strictly totally positive and
bounded a.s.,

this establishes the following
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Theorem 4.3. Suppose that A1, A2, A4′, and 9 hold. Then, for any p and m, h(p,m,ε) is
globally invertible for all x−J ∈ B−J (p,m), and, hence, x−J has a non-degenerate distribution
on B−J (p,m), given any p and m.

The following example is a variant of Example 3.2 and illustrates both Theorem 4.1 and
Theorem 4.3.

Example 4.1. Consider the random utility model for three goods x = (x1, x2, x3)
′,

U (x,ε,θ) =
(

θ1

ε1
(x1 +1)ε1 + θ2

ε2
(x2 +1)ε2 + x3 + θ3

ε1 + ε2

( x1

2
+ x2

2
+1

)ε1+ε2
)1/ε1+ε2

,

where θ = (θ1,θ2,θ3)
′ is a vector of fixed, positive parameters, and ε1 and ε2 are random utility

parameters, with a continuous distribution on the unit interval and satisfying ε1 +ε2 < 1.9 In this
case, heterogeneity does not enter the marginal rates of substitution in a separable fashion:

MRS(x,ε,θ) = vec{θi (xi +1)ε1−1, i = 1,2}+ ι
θ3

2

( x1

2
+ x2

2
+1

)ε1+ε2−1
.

In this example,

∇εMRS(x,ε,θ) = diag{θi (xi +1)εi −1 ln(xi +1), i = 1,2}+ cιι′

∇x−3 MRS(x,ε,θ) = diag{θi (εi −1)(xi +1)εi −2, i = 1,2}+dιι′,

where c = θ3
2

( x1
2 + x2

2 +1
)ε1+ε2−1 ln

( x1
2 + x2

2 +1
)
> 0, and d = θ3(ε1+ε2−1)

4

( x1
2 + x2

2 +1
)ε1+ε2−2

<
0 a.s. It is easy to verify that |∇εMRS(x,ε,θ)| > 0 a.s., so that the positive diagonal ele-
ments of ∇εMRS(x,ε,θ) imply that this matrix is strictly positive definite. Similarly, the sup-
port restrictions on εi , i = 1,2, imply that |∇x−3 MRS(x,ε,θ)| > 0 a.s., and therefore, a.s.,

|− [∇x−3 MRS(x,ε,θ)
]−1 | > 0. The diagonal elements of −[∇x−3MRS(x,ε,θ)

]−1
are propor-

tional10 to −θi (εi − 1)(xi + 1)εi −2 − d, i = 1,2, and, as a consequence of the support restric-
tions on ε, also positive. Therefore, −[∇x−3 MRS(x,ε,θ)]−1 is also strictly totally positive a.s.
For finite income m and prices p bounded away from zero, all matrix components are finite on
B−3(p,m). Then, the Cauchy–Binet formula implies that −[∇x−3MRS(x,ε,θ)]−1∇εMRS(x,ε,θ)
is strictly totally positive a.s.; that is, in particular it is a P matrix and therefore has all principal
minors positive a.s.

5. CONCLUSIONS

This paper fills an important gap in the theoretical microeconometric analysis of consumer choice.
It provides conditions on structural non-parametric preference models for continuous choices
under which the induced stochastic demand system is non-separable in unobserved preference
heterogeneity and globally invertible. It extends the class of non-parametrically identifiable
random utility models with multiplicatively separable heterogeneity beyond the classical model
of Brown and Matzkin (1995) and discusses various extensions to completely non-separable

9. Strictly speaking, the support of the joint distribution of [ε1,ε2] is, therefore, a triangular set. This can be turned
into a rectangle by requiring that εi ∈

(
0, 1

2

)
, i = 1,2.

10. Up to a positive scale factor.
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cases. These results and the illustrative examples provided throughout the paper broaden the
class of random utility models suitable for parametric and non-parametric microeconometric
analysis.

Applied researchers face the typical trade-off between tightly, often parametrically specified
models, as, for example, the foregoing parametric examples, which by design satisfy regularity
conditions implied by microeconomic theory; and more general, non-parametric specifications
which proceed by assuming that these conditions hold. This trade-off extends to the global in-
vertibility conditions provided in this paper. In the case of parametric models, estimation can
naturally be carried out in a method of moments framework, possibly assisted by simulation
methods (Beckert, 2005).

Non-parametric demand analyses may generally employ convenient and flexible non-
parametric specifications, assuming that global invertibility holds, under some of the conditions
given above. Alternatively, they can start from relatively flexible representations of random utility
or random marginal rates of substitution, for example, building on the multiplicatively separa-
ble model, as in A5. Suppose, for example, that K (x)ε in A5 has a polynomial approxima-
tion, that is, K (x)ε = K (P; x)ε, where K (P; x) is a matrix polynomial in the exponentiation
operator P ,

K (P; x) = IJ−1 −κ(P; x) = IJ−1 −
p∑

k=1

κk(x)Pk,

the exponentiation operator is defined by Pkε = [εk
j ] j=1,...,J−1, k = 1, . . . , p, the polynomial

degree p may be finite or infinite, and the coefficient matrices {κk(x),k = 1, . . . , p} can be
flexible functions of x. Then, assuming that, for any x−J ∈ B−J (p,m) and xJ = m − p′x−J ,
the characteristic equation |IJ−1 − κ(z; x)| = 0 has all J − 1 roots outside the unit circle, the
inverse matrix polynomial K (P; x)−1 exists, and its coefficient matrices can be related to ma-
trices {κk(x),k = 1 · · · , p} by well-known formulae.11 This model provides added flexibility in
terms of modelling unobserved heterogeneity, while retaining the model’s global invertibility
property.
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ments and discussions. We also thank the editor and two referees for helpful comments. Blundell is grateful for the
financial support of the ESRC Centre for the Micro-economic Analysis of Public Policy at the Institute for Fiscal Studies.

APPENDIX. EXAMPLE: FUNCTION ψ(·) SATISFYING GALE AND NIKAIDO (1965)
CONDITIONS

Consider the functionψ(ε) = exp(Aε), where ε ∈ E ⊂ RJ−1 and A is a (J − 1)× (J − 1) matrix. The Jacobian of
ψ(ε) is

∇εψ(ε) = [ψ(ε)◦A1., . . . ,ψ(ε)◦AJ−1.],

where A j., j = 1, . . . , J −1, is the j-th column of A.
Suppose A is triangular, with positive diagonal elements. Then, ∇εψ(ε) is triangular as well and, since ψ(ε) has

positive elements a.s., has positive diagonal elements, and the same is true for every principal submatrix of A and ∇εψ(ε).
Hence, ∇εψ(ε) and its principal submatrices have determinants which equal their traces and hence are positive. Conse-
quently, ψ(ε) also satisfies the weaker Mas-Colell (1979) conditions.

11. Technically, this is closely related to the invertibility of vector autoregressive and moving average processes in
multivariate time series analysis.

c© 2008 The Review of Economic Studies Limited



1080 REVIEW OF ECONOMIC STUDIES

REFERENCES
BARTEN, A. P. (1964), “Consumer Demand Functions Under Conditions of Almost Additive Preferences”, Economet-

rica, 32, 1–38.
BARTEN, A. P. (1968), “Estimating Demand Equations”, Econometrica, 36 (2), 213–251.
BECKERT, W. (2005), “Estimation of Stochastic Preferences: An Empirical Analysis of Demand for Internet Services”,

Review of Economics and Statistics, 87 (3), 495–502.
BECKERT, W. (2006), “Specification and Identification of Stochastic Demand Models”, Econometric Reviews, 26 (6),

669–683.
BECKERT, W. and BLUNDELL, R. (2005), “Heterogeneity and the Nonparametric Analysis of Consumer Choice:

Conditions for Invertibility” (Working Papers CWP09/05, cemmap).
BENKARD, C. L. and BERRY, S. (2006), “On the Nonparametric Identification of Nonlinear Simultaneous Equations

Models: Comment on B. Brown (1983) and Roehrig (1988)”, Econometrica, 74 (5), 1429–1441.
BROWN, B. W. (1983), “The Identification Problem in Systems Nonlinear in the Variables”, Econometrica, 51 (1),

175–196.
BROWN, B. W. and WALKER, M. B. (1989), “The Random Utility Hypothesis and Inference in Demand Systems”,

Econometrica, 57 (4), 815–829.
BROWN, D. J. and MATZKIN, R. L. (1995), “Estimation of a Random Utility Model from Data on Consumer Demand”

(Mimeo, Yale University and Northwestern University).
BROWNING, M. and CARRO, J. (2007), “Heterogeneity and Microeconometrics Modelling”, in R. Blundell, W. Newey

and T. Persson (eds.) Advances in Economics and Econometrics, Theory and Applications: Ninth World Congress
of the Econometric Society, Vol. 3, ch. 3, Econometric Society Monographs, 43 (Cambridge: Cambridge University
Press) 47–74.

FIEDLER, M. and PTÁK, V. (1962), “On Matrices with Non-Positive Off-Diagonal Elements and Positive Principal
Minors”, Czechoslovak Mathematical Journal, 12, 382–400.

GALE, D. and NIKAIDO, H. (1965), “The Jacobian Matrix and Global Univalence of Mappings”, Mathemathische
Annalen, 159 (2), 81–93.

HECKMAN, J. (2001), “Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture”, Journal of
Political Economy, 109, 673–748.

HORN, R. A. and JOHNSON, C. R. (1985), Matrix Analysis (Cambridge, MA: MIT Press).
HORN, R. A. and Johnson, C. R. (1991), Topics in Matrix Analysis (Cambridge, UK: Cambridge University Press).
IMBENS, G. and NEWEY, W. K. (2002), “Identification and Estimation of Triangular Simultaneous Equations Models

Without Additivity” (Mimeo, Department of Economics, MIT).
KARLIN, S. (1968), Total Positivity (Stanford: Standford University Press).
LEWBEL, A. (2001), “Demand Systems With and Without Errors”, American Economic Review, 91 (3), 611–618.
LEWBEL, A. (2007), “Modelling Heterogeneity”, in R. Blundell, W. Newey and T. Persson (eds.) Advances in Economics

and Econometrics, Theory and Applications: Ninth World Congress of the Econometric Society, Vol. 3, ch. 5,
Econometric Society Monographs, 43 (Cambridge: Cambridge University Press) 111–121.

MAS-COLELL, A. (1979), “Homeomorphisms of Compact, Convex Sets and the Jacobian Matrix”, SIAM Journal of
Mathematical Analysis, 10 (6), 1105–1109.

MAS-COLELL, A., WINSTON, M. D. and GREEN, J. R. (1995), Microeconomic Theory (New York: Oxford University
Press).

MATZKIN, R. L. (2003), “Nonparametric Estimation of Nonadditive Random Functions”, Econometrica, 71 (5), 1339–
1376.

MATZKIN, R. L. (2005), “Nonparametric Simultaneous Equations” (Mimeo, Department of Economics, Northwestern
University).

MATZKIN, R. L. (2007), “Heterogeneous Choice”, in R. Blundell, W. Newey and T. Persson (eds.) Advances in Eco-
nomics and Econometrics, Theory and Applications: Ninth World Congress of the Econometric Society, Vol. 3, ch.
4, Econometric Society Monographs, 43 (Cambridge: Cambridge University Press) 75–110.

MCFADDEN, D. L. (2004), “Revealed Stochastic Preference: A Synthesis” (Mimeo, UC Berkeley).
MCFADDEN, D. L. and RICHTER, K. (1971), “On the Extension of a Set Function on a Set of Events to a Probability

on the Generated Boolean σ -algebra” (Working Paper, University of California Berkeley).
MCFADDEN, D. L. and RICHTER, K. (1990), “Stochastic Rationality and Revealed Stochastic Preference”, in J.

Chipman, D. McFadden, K. Richter (eds.) Preference, Uncertainty, and Rationality, (Boulder: Westview Press)
161–186.

ROEHRIG, C. S. (1988), “Conditions for Identification in Nonparametric and Parametric Models”, Econometrica, 56
(2), 433–447.

c© 2008 The Review of Economic Studies Limited


